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Abstract

We reproduce the proof of the classification of stationary measures that appears
in the seminal paper of Benoist and Quint «Mesures stationnaires et fermes invariants
des espaces homogenes » in the simplest case of linear actions on the torus.
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1 Introduction
Let T = R2/Z2 be the 2-dimensional torus. It is endowed with an action ofG = SL2(Z),
the famous group of integer matrices.

Theorem 1.1. Let µ be a compactly supported probability measure on G whose support
span a Zariski dense sub-semigroup. Then any atom-free µ-stationary measure on T is
the Lebesgue measure.

This result is due to Benoist and Quint and is a particular case of a much more
genreal result. The goal of those notes is to present the proof as it is conducted
in [?], though we may slighty change the presentation from time to time. There is
no conceptual shorcut in the proof of this simpler case but we feel some concepts or
details became less intimidating or easier to expose in that context. We also added a
few details or comments in some proofs that we thought were relevant. For the sake of
completeness, we added in subsection 6.2 the proof of the classification of closed sets
that is a spectacular application of the classification of stationary measures given by
Benoist and Quint.

2 Looking into the past: the backward dynamical sys-
tem and its renormalisation

2.1 Space of past trajectories
We denote by G the Borel σ-algebra on G. Let B be the product space GN, let G⊗N

be the product algebra, let β be the product measure µ⊗N, let B be the β-completion
of G⊗N and let Bn be the σ-algebra generated by the projection the on the n first
coordinates of B. Finally, let X be the Borel σ-algebra of X. The set B ×X will be
referred to as the set of past the past trajectories and will be denoted by BX . We think
of elements of BX as possible trajectories of the random walk if it were happening since
the origin of time up to the present, the projection on the X factor corresponding to
where the random walked arrived at the present. An element (b, x) ∈ BX corresponds
to a trajectory that arrived at x, and that was at b−1

1 x one step ago, at b−1
2 b−1

1 x
two steps ago... etc. This heurisitic explains the choice of terminology. There is a
natural measure on the space of past trajectories defined as follows. Let (νb)b∈B be the
Furstenberg measures associated to the random walk on X induced by the measures µ
and ν (see Appendix) and define:

βX =

∫
B

δb ⊗ νb dβ(b)

We denote by πB and πX the projection on the two factors of BX , of which think
as random variables on the probability space (BX , βX). The following proposition
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characterizes the measure βX .

Proposition 2.1. The measure βX is the only measure that satisfies the following two
properties:

1. (πB)∗β
X = β

2. The conditionnal law βX(πX ∈ A | πB = b) is given by νb(A)

In particular, if f is Bn ⊗X -measurable:∫
BX

f(b, x) dβX(b, x) =

∫
B

∫
X

f(b, b1 · · · bn · y) dν(y)dβ(b) (1)

Proposition 2.1 provides an interpretation of the measure βX in the language of
probability theory. If E ∈ B⊗X is a measurable set (or event), we think of the quantity
βX(E) as the probability the event E is realized as a trajectory of the random walk from
the origin of time to the present. The first item of proposition 2.1 simply translates
the fact that, by definition of the random walk, any step is chosen independently with
law µ. To understand the second item, remember that the starting of the random walk
is chosen, by definition, with law ν and thus the probability to end up in A along b is
(b1 · · · b∞)∗ν. Of course, this equality can only be made rigorous with a limit and we
should write lim

n→∞
(b1 · · · bn)∗ν, which is precisely the definition of νb.

Remark. The second item of proposition 2.1 can be rephrased in: the disinte-
gration of βX on the fiber of b is δB ⊗ νb. See the appendix for more details on
disintegration of measures.

2.2 Backward dynamical system
The space of past trajectories is associated with a natural dynamical system that we
define now. We denote by T : B → B the one sided shift that deletes the first letter
and we define:

TX :
BX → BX

(b, x) 7→ (T (b), b−1
1 · x)

The map TX corresponds to looking one step into the past. It is natural in the
following sense:

Proposition 2.2. The measure βX is preserved by the map TX .

We can now introduce one of the principal ingredient of the the method developped
by Benoist and Quint.

Definition 2.1. The quadruplet (BX ,B⊗X , βX , TX) is called the backward dynamical
system.
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2.3 Measure of the stable leaves
Definition 2.2. The support of the measure µ is the smallest closed subgroup Γµ such
that µ(Γµ) has measure 1.

Lemma 2.1. The action of Γµ on R2 satifies the following two properties:

• It is stongly irreducible: no finite index subgroup of Γµ preserves a line in R2.

• It is proximal: there is a sequence γn ∈ Γµ and a rank 1 endomorphism π such
that:

γn
∥γn∥

→
n→∞

π

Proof. We start with item 1. Saying that a finite index subgroup of Γµ preserves a
line amounts to saying that Γµ preserves a finite union of lines which is a contradiction
with the Zariski density assumption.

For the second item, recall that Γµ is discrete as a subgroup of SL2(Z). This
implies that it is unbounded as otherwise it would be finite and could not act strongly
irreducibily. Let γn be a sequence in Γµ such that ∥γn∥ → ∞. The sequence of matrices
∥γn∥−1 · γn is bounded and thus, up to extracting, converges to some matrix π. By
continuity, the determinent of π is the limit of the determinant of ∥γn∥−1 · γn which is
∥γn∥−1 as Γµ is contained in SL2(R). Consequently, π is not invertible and its norm
equals 1 as a limit of matrices with norm 1: it is a rank 1 endormorphism.

Lemma 2.1 has the following important consequence, which results from ? in the
appendix.

Proposition 2.3. For β-almost every b ∈ B, there is a line Vb such that image of any
limit point of ∥b1 · · · bn∥−1 · b1 · · · bn is given by this line Vb. In particular, for β-almost
every b ∈ B, the following holds:

Vb = b1 · VT (b)

Proof. This follows from lemma 2.1 and proposition A.2.

The remainder of this subsection is dedicated to the proof of the following propo-
sition. It (or more precisely its consequence stated in proposition 2.12 below) is a key
step in the approach of Benoist and Quint. This is what they need to initiate their
exponential drift that is presented in proposition 5.1

Proposition 2.4. If ν is a non atomic measure, then for βX-almost every (b, x) ∈ BX ,
we have:

νb(x+ Vb) = 0
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If we denote by ρn(b) the product b−1
n · · · b−1

1 , notice that by definition of the Vb,
y ∈ x+ Vb if and only if d(ρn(b) · x, ρn(b) · y) converges to zero as n gets large. It will
be convenient to work with more general compact spaces. If (Y, d) is a compact metric
space endowed with a continuous action of G, we define the unstable leaf of (b, x) by:

Wb(x) = {y ∈ Y | lim
n→∞

d(ρn(b) · x, ρn(b) · y) = 0}

On such a set Y , we denote

Aµ(v) = (x, y) 7→
∫
G

v(g · x, g · y)dµ(g)

We shall say that µ has the contraction property on Y if there is an unbounded
positive function v : Y × Y −∆Y → [0,∞[ such that :

1. For any compact K of X, the restriction of v to K ×K −∆K is proper
2. There are two constants 0 < a < 1 and C > 0 such that Aµ(v) ≤ av + C

The meaning of the contraction property is that the diagonal is repulsive for the
random walk on the product Y 2 at a rate given by a. Indeed, by the properness
assumption, v gets large only close to the diagonal. When that happens, the constant
C becomes irrelevant and then item 2 says that the expected value of v after one step
of the random walk has to uniformly decrease according to the factor a. If ν is a
stationary measure on Y that is concentrated on a single point y0, then almost all
the νb also are Dirac masses on y0. The following proposition establishes the converse
when the contraction property holds.

Proposition 2.5. Let (Y, d) be a compact metric space endowed with a continous
action of G and assume that µ has the contraction property on Y . If ν is a stationary
measure on Y such that for β-almost every b in B, the measure νb is a Dirac mass,
then the measure ν is a Dirac mass itself.

Proof. We will consider the product random walk on X2. We will show that the con-
traction property forces typical random trajectories that start off the diagonal to stay
away from it while the fact that the νb are Dirac masses forces the random trajectories
to converge to the diagonal. Those two behavior are not compatible unless all the mass
of ν ⊗ ν is concentrated at a single point of the diagonal, that is ν is a dirac mass.
More precisely, we define Sp(x, y) to be the time average 1

p

∑p
k=1A

k
µ(v)(x, y). We shall

first prove that this function is bounded above whenever x ̸= y but that if ν is not a
dirac mass, there are two points x ̸= y such that Sp(x, y) is unbounded.

We start by finding elements x, y for which the time average Sp(x, y) is unbounded.
Define κ : B → X to be the map such that νb is the Dirac mass at κ(b). Notice that
by equation (6) in the appendix, we have the follwing:

κ(gb) = g · κ(b) (2)

and

ν = κ∗β (3)
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By Lusin’s theorem, we chose a compact K0 in B of mass β(K0) > 1− ε on restric-
tion to which the function κ is absolutely continous. Restricting to such a compact
allows to rule out the trajectories along which convergence doesnt hold, such as tra-
jectories of the form (g, g−1, g, g−1, · · · ). By assumption, the function v is proper on
K×K−∆K where K = κ(K0). Using the fact that v is also unbounded, we show that
for any M > 0 there is a η such that if d(x, y) ≤ η then v(x, y) ≥ M . In particular,
using the uniform continuity of κ on restriction to K0, there is a range nM such that
for any n ≥ nM , any b, b′ ∈ B and g1, · · · , gn ∈ G such that g1 · · · gnb and g1 · · · gnb
are in K, one has d(κ(g1 · · · gnb), κ(g1 · · · gnb′)) ≤ η (as words sharing the same first
letters are close) and thus:

v(κ(g1 · · · gnb), κ(g1 · · · gnb′)) ≥M

To use this, we shall exhibit for β-almost every b ∈ B many g1, · · · , gn such that
g1 · · · gnb is in K0. We define the following operator on L1(B,µ):

Lµ(φ)(b) =

∫
G

φ(gb)dµ(g)

The Chacon-Ornstein ergodic theorem applied to Lµ and 1K0 gives that there is a
null set N such that for b ∈ B −N :

1

p

p∑
n=1

µ⊗n{(g1, · · · , gn) ∈ Gn | g1 · · · gnb ∈ K0} →
p→∞

β(K0) ≥ 1− ε

Up to increasing N , according to formula (2), we have that for any b in B−N , and
for µ⊗n-almost every (g1, · · · , gn) ∈ Gn:

κ(g1 · · · gnb) = (g1 · · · gn) · κ(b)

If ν is not a Dirac mass, or equivalently ν ⊗ ν(∆Y ) < 1, then, according to equation
(3) there are two points b and b′ not in N such that κ(b) ̸= κ(b′). Consequently, there
is a p0 ≥ nM such that this sum is bigger than 1− 2ϵ and thus:

Sp(κ(b), κ(b
′)) =

1

p

p∑
n=1

∫
Gn

v(g1 · · · gn · κ(b), g1 · · · gnκ(b′))dµ⊗n(g1, · · · , gn)

=
1

p

p∑
n=1

∫
Gn

v(κ(g1 · · · gn · b), κ(g1 · · · gn · b′))dµ⊗n(g1, · · · , gn)

≥ 1

p

p∑
n=p0

Mµ⊗n{(g1, · · · , gn) ∈ Gn | g1 · · · gnb ∈ K0 & g1 · · · gnb′ ∈ K0}

≥ (1− 4ϵ− p0
p
)M

On the other hand, the contraction property gives:

An
µ(v) ≤ anv + (1 + · · ·+ an−1)
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and thus

Sp(v)(κ(b), κ(b
′)) ≤ 1

p(1− a)
v(κ(b), κ(b′))) +

1

1− a
C

So eventually, taking the limit when p goes to infinity:

(1− 4ϵ)M ≤ C

1− a

As M was arbitrary, that is a contradiction whenever ϵ < 1
4 .

In order to show that µ has the contraction property on X, we need the following
lemma that appears in [?] (proposition 4.2):

Lemma 2.2. There are δ > 0, n ≥ 1 and a < 1 such that:∫
G

∥g · v∥−δdµn(g) ≤ a ∥v∥−δ

Proposition 2.6. The measure µ has the contraction property on the space (T2, deucl)

Proof. Let δ, n and a be as in lemma 2.2, Observe first that if µ∗n has the contraction
property on X, so has µ. Indeed, let v0 be as in the contraction property for µ∗n.
Define:

v =

n−1∑
k=0

a−kAk
µ(v0)

It is easy to see that the function v satisfies the contraction property for µ with the
same constants a and C. Consequently, up to replacing µ by µn, we can assume that
n = 1 in lemma 2.2. Now, define:

v :
X2 −∆X → R
(x, y) 7→ d(x, y)−δ

It is clear that this function is proper on restriction to product of compacts and
unbounded. It remains to show the contraction property. Since the µ is compactly
supported, define:

R = sup
g∈Γµ

max({∥g∥, ∥g−1∥})

Let (x, y) ∈ X ×X −∆X . We single out two cases:

1. If d(x, y) ≤ 1
2R , then there is a unique vector of norm smaller than 1

2R such that
y = x+ u. Consequently, for any g ∈ Γµ, we have g · y = g · x+ g · u with ∥g · u∥ ≤ 1

2
and then d(g · x, g · y) = ∥g · u∥. Thus, using lemma 2.2, we have:
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Aµ(v)(x, y) =

∫
G

d(g · x, g · y)−δdµ(g)

=

∫
G

∥g · u∥−δdµ(g)

≤ a∥u∥−δ

≤ av(x, y)

2. Now, if d(x, y) ≥ 1
2R , then d(g · x, g · y) ≥ 1

2R2 and thus:

Aµ(v)(x, y) =

∫
G

d(g · x, g · y)−δdµ(g)

≤
∫
G

(2R2)δdµ(g) = C

In any case, we obtained:

Aµ(v)(x, y) ≤ av(x, y) + C

Proposition 2.7. If the measure ν is non atomic, then for β-almost every b ∈ B, the
measure νb is non atomic

Proof. We suppose to a contradiction that the set D := {b ∈ B | νb has atomes} is
given positive measure by β. As for β-almost any b ∈ B, b1∗νT (b) = νb, The set
contains a T -invariant conull set D0. By ergodicity of the shift map, we get that D has
full measure. Using the same argument, we can also show that the number of atoms
with the biggest mass and the number of such atoms is constant on D0. We shall
denote by N0 and m0 those quantities. For any b ∈ D0, we define ν′b to be the average
measure of the N0 atoms of νb of mass m0. By contstruction, we get for any such b the
equivariance property b1∗ν

′
T (b) = ν′b and thus ν′ :=

∫
B
ν′bdβ(b) is also a µ-stationary

measure of mass m0. By construction, ν′ is absolutely continous with respect to ν and
thus is also non atomic.

Let SN0
be the symmetric group of {1, · · · , N0} and define Y = XN0/SN0

. We
denote by p the canonical projection from XN0 → Y and by ηb the measure p∗(ν′⊗N0

b ).
Notice that those measures are now Dirac masses. They still satisfy the equivariance
property and thus η =

∫
B
ηb dβ(b) is a µ-stationary measure. There is a natural

continuous action of G on Y by taking the quotient of the diagonal action on XN0 and
we claim that µ has the contraction property on Y . To see this, let v : X ×X −∆X

be the map gien by proposition 2.6 and define:

w :
Y → Y

(p(xi), p(x
′
i)) 7→

∑
σ∈SN0

min
i∈J1,N0K

v(xi, x
′
σ(i))
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It is easily verified that w is proper and that:

Aµw ≤ aw + CN0!

We can thus apply proposition 2.5 to deduce that η is a Dirac mass. In turn, this
implies that the νb are β-almost all supported on the same finite set of points and thus
ν′ has finite support, which is a contradiction.

Before going on to the last step of the proof of proposition 2.4, we shall first proof
the following technical lemma:

Lemma 2.3. Let (Ω, η) be a probability space together with a measurable map f : Ω →
Ω that preserves the measure η and let φ : Ω → R be a measurable map such that
φ−1{0} is a null set, then Zφ = {ω ∈ Ω | φ ◦ fp(ω) →

n→∞
0} is also a null set.

Proof. Write φ−1(0) = ∪n φ
−1([n−1,∞[) and suppose to a contradiction that η(Z) >

0. Then there exists n > 0 such that η(Z ∩ φ−1[n−1,∞[) > 0. Poincaré recurrence
theorem applied to this set yields a point ω and a sequence np going to infinity such
that φ ◦ fnp(ω) both converge to 0 when p goes to infinity and is bounded below by
n−1. This is a contradition and Z is a null set.

Proposition 2.8. If for β-almost every b ∈ B, the measure νb is non atomic then for
βX-almost every (b, x) ∈ BX , we have νb(x+ Vb) = 0.

Proof. The idea is to apply the lemma 2.3 to a well chosen dynamical system. Define
Ω = B ×X ×X that we endow with the measure η =

∫
B
δb ⊗ νb ⊗ νb dβ(b) and let f

be the map (b, x, y) 7→ (T (b), b−1
1 · x, b−1

1 · y) and φ be the map (b, x, y) 7→ d(x, y). The
measure η is preserved by the transformation f . Notice that Zφ = {(b, x, y) | y ∈ x+Vb}
and since the νb are non atomic, the set φ−1{0} has measure 0. Consequently, lemma
2.3 shows:

η(Zφ) =

∫
BX

νb(x+ Vb) dβ
X(b, x) = 0

Proof of proposition 2.4. If ν is non atomic then proposition 2.7 shows that the νb are
non atomic either and then we conclude using proposition 2.8.

2.4 Renormalization and the horocycle flow
Recall that for β-almost every b ∈ B, the following holds:

b1 · VT (b) = Vb

Put otherwise, this relation means that the slices {b} × Vb are permuted by TX .
There is thus a well defined measurable map s : B → R such that for β-almost every
b ∈ B, the following holds:

b1 · vT (b) = s(b) · vb
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This allows to define a flow on BX by φt(b, x) = (b, x + t · vb). The fact that the
slices {b} × Vb are permuted is translated into the following:

φt ◦ TX(b, x) = TX ◦ φt·s(b)(b, x)

For a reason that will become clear later, it would be interesting to reparametrise
the Vb so that the time change in the orbit of φt that appears in the previous equation is
orientation-preserving and not dependent on b ∈ B. It turns out that this is not always
possible but this difficulty can be bypassed with a "suspension" construction that we
now detail. Let τ : B → R be a measurable map and define τp(b) =

∑p−1
k=0 τ ◦ T p(b).

We denote Bτ = {(b, k, ε) ∈ B × R × {±1} | 0 ≤ t < τ(b)} and the corresponding
suspended flow over the shift map T . For any c = (b, k, ε)

T τ
l (c) = (T pl

c(b), τpl
c
(b)− l + k, sgn(s(b)) · ε)

Where we set:

plc = min {p ∈ N | τp(b)− (l − k) ≥ 0}

The heuristic of those constructions is that we now attach to any sequence of steps
of the random walk b ∈ B two new quantities. The first one is τ(b). It corresponds to
the duration needed to perfom the last step along b. By extension τp is the duration
needed to perfom the p last steps. The second information, encoded in the factor
{±1}, records if the last jump matches or not the orientation of the attracting spaces
Vb and VT (b) defined by s. With this in mind, the semi-flow T τ

l corresponds to looking
up in past at time t = −l. We have the corresponding space of past trajectories
Bτ,X = Bτ ×X and the corresponding semi flow:

T τ,X
l :

Bτ,X → Bτ,X

(c, x) 7→ (T τ
l (c), b

−1
plc

· · · b−1
1 · x)

This semi-flow maps past trajectories (c, x) to its past l units of time ago. We now
need to chose carefully the map τ to solve our initial problem, this is the purpose of
the following proposition. We denote θ = log(|s|).

Proposition 2.9. There are ε > 0, a measurable map τ : B → R bounded below by ε
and a bounded measurable measurable map φ : B → R such that:

θ − φ ◦ θ + φ = τ

From now on, we chose τ as in proposition 2.9. The set Bτ has finite measure
for the measure β ⊗ λ as a subset of B × R × {±1}, where λ is the Haar measure on
R × {±1}. We denote by βτ the probability measure induced on Bτ by restriction of
β ⊗ λ. If c = (b, k, ε), we denote νc = νb and we define a measure βτ,X on Bτ,X by:

βτ,X =

∫
Bτ

δc ⊗ νc dβ
τ (c)

Proposition 2.10. The measure βτ,X is T τ,X
l -invariant.
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We denote by Bτ the completion for the measure βτ of the product σ-algebra
G⊗N ⊗ B(R)⊗ B({±1})) restricted to Bτ .

Definition 2.3 (Normalized backward dynamical system). The space (Bτ,X ,Bτ ⊗
X , βτ,X , T τ,X

l ) is called the normalized backward dynamical system.

Definition 2.4 (Horocycle flow). We define a flow the space Bτ,X , called the horocycle
flow, as follows:

Φt((b, k, ε), x) = ((b, k, ε), x+ t · εek−φ(b)vb)

This flow is the suspension of the flow φt defined at the beginning of this section.
The constructions made in this section result in, as advertised, the following crucial
result:

Proposition 2.11. For βτ,X-almost every (c, x) ∈ Bτ,X , we have:

T τ,X
l ◦ Φt(c, x) = Φe−lt ◦ T

τ,X
l (c, x)

Proof. To be added. We refer to lemma 6.10 in [?]

We can draw from proposition 2.4 a first important fact about the renormalized
backward dynamical system. For any c = (b, k, ε) ∈ Bτ , we write:

Wc = {v ∈ R2 | sup
l>0

(el∥b−1
pl
c
· · · b−1

1 · v∥) <∞}

Proposition 2.12. Let F0 be any Bτ,X-measurable set of positive measure. There
exists a subset F ⊂ F0 of full measure such that for any (c, x) ∈ F , there is a sequence
(un) converging to 0 in R2 \Wc such that (c, x+ un) ∈ F .

Proof. to be added. We refer to corollary 6.15 in [?]

3 Leaf-wise measures

3.1 Construction
Throughout this section, let v ∈ R be a non-zero vector and define for any x ∈ X and
t ∈ R:

ϕs(x) = x+ s · v

A flow box for ϕs is a homeomorphism φ : U1 × U2 → U ∈ X with Ui open sets
contained in R and U open set containedX such that for any t ∈ U2, the slice φ(U1×{t})
is a piece of orbit of ϕ. This means that, for any t ∈ U2, there is a map γt : Ut → R
such that φ(s, t) = ϕγt(s)(φ(0, t)). Let v⊥ be a non-zero vector in R2 perpendicular to
v and define the following map:

a :
R2 → X
(s, t) 7→ s · v + t · v⊥ mod Z2
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The simplest example of a flowbox is given by (s, t) 7→ a(x + s, y + t). In that
case the map γt is the identity map. There is an important construction associated
to any flowbox φ that we now explain. Let t ∈ U1 and define µφ to be the measure
on U2 obtained by pushing forward the restriction of ν to U by π2 ◦ φ−1. Here, π2 is
the canonical projection U1 × U2 → U2. The disintegration theorem yieds a familly of
measure νφs , uniquely defined up to a conull set, such that for any ν-integrable function
f : U → R: ∫

U
f dν =

∫
U2

(∫
U1

f ◦ φ(s, t) dνφt (s)
)
dµφ(t)

Finally, if λ is a measure, we shall denote by [λ] its projective class, i.e its equivalence
class modulo multiplication by a positive scalar and by τc : R → R the translation by
c.

Proposition 3.1 (Leafwise measures). There are a measurable map σ : X → PM(R)
and a conull set E which satisfy the following two properties:

1. Let φ : U1 × U2 → U be a flowbox. For ν-almost every x = φ(sx, tx) ∈ U , the
following holds:

(τγtx(sx)
)∗σ(x) = (γtx)∗[ν

φ
t ]

2. For any t ∈ R and x ∈ E such that ϕu(x) ∈ E, the following holds:

σ(x) = (τu)∗σ(ϕu(x))

Furthermore, if σ′ is another such map then it coincides with σ on a set of full
measure.

remark. Item 1 is an equality of measures on γtx(U1). Using item 1, one can locally
recover the σ(x) using flowboxes and disintegration of the measure ν along pieces of
orbits of ϕ. Item 2 indicates how to patch those pieces up. Notice that in the case of
a flowbox φ(u, v) = a(s+ u, t+ v), item 1 rewrites as:

(τu)∗σ(x) = [νφv ], where x = φ(u, v)

proof of proposition 3.1. First, we construct the map σ. It will be obtained as the
quotient of a map defined on R2. Let ν̃ be the locally finite measure defined such that
for any For any compactly supported continuous function f : R2 → R:∫

R2

f dν̃ =

∫
X

Σ
a−1(x)

f(s, t) dν(x)

Now, let µ̃ to be a finite measure equivalent to ν̃. We mean by that that µ̃ is
absolutely continous with respect to ν̃ and that the corresponding Radon-Nikodym
derivative is nowhere vanishing. Such a measure can be constructed by multipliying
ν̃ by a map with mean 1 and that is decreasing quickly at infinity. We denote by µ
the pushforward of µ̃ by the projection on the second factor and disintegration of the
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measure ν̃ on the fibers of the projection, we get a familly of measure ν̃y such that for
any ν̃-integrable function, the following holds:

ν̃(f) =

∫
R

(∫
R
f(s, t) dν̃t(s)

)
dµ(t)

We claim that if a(s, 0) = a(0, t) then for µ-almost any y ∈ R, the following holds:

ν̃y ∝ (τs)∗ν̃y+t (4)

To prove this claim, notice that, by construction, the measure ν̃ is invariant by
translation by (s,−t) and thus, since ν̃ and µ̃ are equivalent, so are τt∗µ and µ. Denote
by g the corresponding Radon-Nikodym derivative. For any ν̃-integrable function f :
U → R, we have:

∫
R2

f(u, v) dν̃(u, v) =

∫
R2

f(u+ s, v + t) dν̃(u, v)

=

∫
R

(∫
R
f(s+ u, v − t) dν̃v(u)

)
dµ(v)

=

∫
R

(∫
R
f(u, v) d(τs)∗ν̃v(u)

)
d(τ−t)∗µ(v)

=

∫
R

(∫
R
f(u, v) dg(v) · (τs)∗ν̃v(u)

)
dµ(v)

This proves our claim as g is everywhere positive and that the ν̃y are uniquely
defined up to a conull set. As they are only coutably many pairs (s, t) as before, let E
be a conull set on which the previous equality holds for any such pair. We now define
the following measurable map:

σ̃ :
R2 → M(R)
(s, t) 7→ (τ−s)∗ν̃t

This map descends to a well defined measurable map σ : X → PM(R). This is a
consequence of equation (4) that we proved earlier. We now check that item 1 and 2
are satisfied.

For the first item, let φ̃ : U1 × U2 → R2 be a homeomorphism such that a ◦ φ̃ = φ.
By assumption, there are two maps φ1 : U1 × U2 → R and φ2 : U2 → R such that
φ̃ = (φ1, φ2). Notice that, since ν̃ and µ̃ are equivalent, the measures νφ is absolutely
continuous with respect to the measure φ∗

2µ. Let h be the corresponding Radon-
Nikodym derivative and denote by U ′

2 the subset of U2 where h does not vanish. Notice
that by unicity of the disintegration, νφ2(t)(φ1(·, t)(U1)) vanishes whenever t /∈ U ′

2. Let
f be any ν-integrable function.

13



∫
U
f dν =

∫
φ̃(U1×U2)

f ◦ a dν̃

=

∫
φ2(U2)

(∫
φ1(U1×{φ−1

2 (t)})
f ◦ a(s, t) dν̃t(s)

)
dµ(t)

=

∫
U2

(∫
φ1(U1×{t})

f ◦ a(s, φ2(t)) dν̃φ2(t)(s)

)
dφ∗

2µ(t)

=

∫
U2

(∫
U1

f ◦ a(φ1(s, t), φ2(t)) d(φ1(·, t))∗ν̃φ2(t)(s)

)
dφ∗

2µ(t)

=

∫
U ′

2

(∫
U1

f ◦ a ◦ φ̃(s, t) d(φ1(·, t))∗ν̃φ2(t)(s)

)
dφ∗

2µ(t)

=

∫
U ′

2

(∫
U1

f ◦ φ(s, t) dh−1(t) · (φ1(·, t))∗ν̃φ2(t)(s)

)
dµφ(t)

=

∫
U2

(∫
U1

f ◦ φ(s, t) dh−1(t) · (φ1(·, t))∗ν̃φ2(t)(s)

)
dµφ(t)

From this, we get that for µφ-almost every t ∈ U2:

νφt = h−1(t) · φ1(·, t)∗ν̃φ2(t) = h−1(t) · φ1(·, t)∗ν̃φ2(t)

And since a ◦ φ̃(s, t) = φ(s, t), one gets that for µφ-almost every t ∈ U2 and for any
s ∈ U1:

τφ1(s,t)∗σ(φ(s, t)) = [τ−φ1(s,t)∗ν̃φ2(s,t)] = [φ1(·, t)∗νφt ]

To conclude, one just has to notice that for any t ∈ U2, φ1(·, t) = ˜φ(0, t) + γt.

We now check the second item of the statement. Let x ∈ E and let t ∈ R such that
ϕt(x) belongs to E. Let (u, v) such that a(u, v) = x. Notice that a(u + s, v) = ϕs(x).
By construction σ(x) = (τ−u)∗ν̃v and σ(ϕt(x)) = (τ−u−s)∗ν̃t = (τ−s)∗σ(x).

Finally, the unicity property follows from the remark made before the proof.

3.2 Renormalization of the leafwise measures
We now arrive to a cornerstone of the approach followed by Benoist and Quint. In the
previous subsection, we associated to any v ∈ R2 a measurable map σ : X → PM(R).
From now on, we shall denote this map σv to stress the dependence on v. We define:

σ :
Bτ,X → R

(b, k, ε, x) 7→ σεek−φ(b)vb

The proof of Theorem 1.1 is based on an analysis of some invariance property of σ.
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Proposition 3.2. For any l ≥ 0 am for βτ,X-almost every (c, x) ∈ Bτ,x, the following
holds:

σ ◦ T τ,X
l (c, x) = (e−l)∗σ(c, x)

Proof. To be added. We refer to lemma 6.12 in [?]

Corollary 3.1. The map σ : Bτ,X → M(R) is Qτ,X
∞ - measurable.

Proof. To be added. We refer to corollary 6.13 in [?]

4 Rewritting the near past

4.1 Law of the last jumps
We now introduce some definitions. For any q ≥ 0 and a ∈ B, we denote by a[q] =
(a1, · · · , aq). If b ∈ B, we will also denote by a[q]b = (a1, · · · , aq, b1, b2, · · · ). It
corresponds to a trajectory of the random walk that went from the origin of time to
t = 0 following b and then did another q jumps following a. Now, let c = (b, k, ε) ∈ Bτ

and define:

q̃lc(a) = sup r{q | τq(a[q]b)− l + k < 0}
If, starting from c, the random walk follows the steps given by a, ie does a1 then

a2 etc, then the number of steps achieved in l unit of time is precisely q̃lc(a). We also
define

h̃lc(a) = (a[q]b, k + l − τq(a[q]b), σq(a[q]b) · ε) with q = q̃lc(a)

Where we have denoted by σq(b, k, ε) = sgn(b) × · · · × sgn(T q(b)). This is the
trajectory of the random walk obtained if we start at c, walk along a and wait l unit
of times. In the same fashion, we denote by h̃lc,x(a) = (h̃lc(a), aq̃lc(a) · · · a1 ·x). We start
with a technical lemma:

Lemma 4.1. For any βτ,X-integrable fonction φ and l > 0, we have:∫
Bτ,X

∫
B

φ(h̃lc,x(a)) dβ(a) dβ
τ,X(c, x) =

∫
Bτ,X

φ dβτ,X(c, x)

We now denote by qlc(a) = q̃lT τ
l (c)(a), h

l
c(a) = h̃T τ

l (a) and finally by hlc,x(a) =

h̃T τ,X
l (c,x)(a). It corresponds to delete the past of (c, x) between t = −l and t = 0 and

replacing it by a. In particular, for any a ∈ B, the point (c, x) and hlc,x(a) have the
same image by T τ,X

l . The following proposition is called the law of the last jumps in
[?]. It will be crucial in the proof of the main proposition 5.1

Proposition 4.1. Let φ : Bτ,X → R be a βτ,X-measurable map. For any l > 0 and
for βτ,X-almost every (c, x) in Bτ,X we have:

E[φ | Qτ,X
l ](c, x) =

∫
B

φ(hlc,x(a))dβ(a)
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Proof. Let ψ be a Qτ,X
l -measurable function. By definition of the conditional expec-

tation, it is enough to prove:

∫
Bτ,X

ψ(c, x)

∫
B

φ(hlc,x(a))dβ(a)dβ
τ,X(c, x) =

∫
Bτ,X

ψ(c, x)φ(c, x) dβτ,X(c, x)

Since the function ψ is Qτ,X
l -measurable, for any (c, x) ∈ Bτ,X and a ∈ B, we have

ψ(c, x) = ψ(hlc,x(a)). Thus:

∫
Bτ,X

ψ(c, x)

∫
B

φ(hlc,x(a)dβ(a)dβ
τ,X(c, x) =

∫
Bτ,X

∫
B

ψ(hlc,x(a))φ(h
l
c,x(a))dβ(a)dβ

τ,X(c, x)

(by definition of h) =

∫
B

∫
Bτ,X

ψ × φ(h̃l
T τ,X
l (c,x)

(a))dβτ,X(c, x) dβ(a)

(using that βτ,X is T τ,X
l − invariant) =

∫
B

∫
Bτ,X

ψ × φ(h̃l(c,x)(a))dβ
τ,X(c, x) dβ(a)

(using lemma 4.1) =

∫
Bτ,X

ψ × φ(c, x) dβτ,X(c, x)

4.2 Random product of matrices
Proposition 4.2. For any α > 0 and η > 0, there are r > 0 and q0 ≥ 1 such that, for
any non zero v ∈ R2 and D ∈ P2(R), the following holds:

• β({a ∈ B | ∀q ≥ q0 ∥aq · · · a1 · v∥ ≥ 1
r ∥aq · · · a1∥∥v∥}) ≥ 1− α

• β({a ∈ B | ∀q ≥ q0 d(Raq · · · a1 · v, aq · · · a1 ·D) ≤ η}) ≥ 1− α

Proof. to be added. For nowm the reader is refered to corollary 5.5 in [?]

5 Drift and invariance of the stationary probabilities

5.1 The exponential drift
Proposition 5.1. Let (Y,Y) be a standard Borel set, let f : Bτ,X → Y be a Qτ,X

∞ -
measurable map and let E ⊂ BX be a conull set: βX(cE) = 0. Then, for βτ,X-almost
every (c, x) ∈ Bτ,X and ε > 0, there is a 0 < t < ε and (c′, x′) ∈ E such that:

f(b′, x′ + t · vb) = f(b′, x′) = f(b, x)

Proof. Before going into the details of the proof, let us say a word on the strategy used
by Benoist and Quint. Let (c, x) and (c′, x′) be two past trajectories of the renormalized
random walk that only differ during the last l seconds, ie:

T τ,X
l (c, x) = T τ,X

l (c′, x′)
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A small deformation of x into y = x+u yields a deformation of x′ into y′ = x+v. All
the efforts made in the previous section are dedicated to controling the vector v. More
precisely, we are going to see that for some choice of u, l and c′, this vector v can be
chosen of norm smaller than ϵ and arbitrarily close to Vc′ . Limiting thius construction
when u converges, we obtain y′∞ = x′∞ + v∞ with v∞ ⊂ Vc′ , or equivalently there is a
0 < t ≤ ε such that:

(c′∞, y
′
∞) = Φt(c

′
∞, x

′
∞)

But the fact that φ is Qτ,X
∞ -measurable implies that whenever two past trajectories

have the same past before a time t = −l, they have the same image by φ and so

φ(c∞, y∞) = φ(c, y) and φ(c∞, x∞) = φ(c, x)

If x and y belong to a continuity set of φ, then we also have:

φ(c, x) = φ(c, y)

Hence:

φ(c, x) = φ(c′∞, x
′
∞) = φ(Φt(c

′
∞, x

′
∞))

Let ε > 0 and let B0 be a conull set contained in B on which the equivariance
relation of the furstenberg measure holds. We denote by Bτ,X

0 = B0 × R× X̃ and let
F ⊂ Bτ,X be the conull set given by proposition 2.12 applied to Bτ,X

0 .

1. We treat first the case where (Y,Y) is a topological space and f is continuous.
The following result is essential.

Proposition 5.2. For any (c, x) ∈ F , η > 0, ε1 > 0 and ε2 > 0, there are l > 0,
u ∈ R2 − {0}, v ∈ R2 and a ∈ B such that, setting y = x+ u:

1. ∥u∥ ≤ ε1

2. hlc,y(a) = hlc,x(a) + v

3. 0 < ∥v∥ ≤ e−Mε2

4. d(R · v, Vhl,c(a)) ≤ η

Proof of proposition 5.2. First notice that there is a λ > 0 such that for any (c, x) ∈ F ,
l ≥ l′ and u ∈ R2, we have:

∥b−1
pl
c
· · · b−1

1 · u∥

∥b−1
p′
l(c)

· · · b−1
1 · u∥

< eλ(l−l′) (5)

Indeed, plc − pl
′

c is the number of steps made between the times t = −l and t = −l′
and this quantity is bouded below by l−l′

min τ . Then the inequality is just a consequence
of the fact that µ is compactly supported. Additionally, there is a constant C > 0 such
that for βτ,X -almost every (c, x) ∈ Bτ,X and l > 0, we have:
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C−1 ≤ e−l ∥b1 · · · bpl
c
· vT τ

l (c)∥ ≤ C

By proposition 2.12, let u ∈ R2 − Vc of norm smaller than ε1 such that (c, y) ∈ Bτ,X
0

where y = x+ u and let r be as in lemma 4.2 for a fixed α < 1. Define:

l0 = inf {l > 0 | el ∥b−1
pl
c
· · · b−1

1 · u∥ > e−(1+λ+M)ε

Cr
}

Notice that, up to taking a smaller u, which is licit according to proposition 2.12,
l0 can be chosen arbitrarily large. We now apply the inequality (5) with l = l0 and
l′ = l0 − 1 to obtain:

el0 ∥b−1
pl0

(c) · · · b
−1
1 · u∥ ≤ e(1+λ)el0−1∥b−1

pl0−1(c)
· · · b−1

1 · u∥

≤ e1+λe−(1+λ+M)ε

Cr

≤ e−Mε

Cr

Consequently, denoting C0 = e1+λ, we get:

e−M

CC0r
ε ≤ el0 ∥b−1

pl0
(c) · · · b

−1
1 · u∥ ≤ e−M

Cr
ε

Show that we can choose l = l0. Since α was chosen to be smaller than 1, proposition
4.2 provides us with a a ∈ B satisfying the two inequalities this proposition features.
Notice that hl0,c,y(a) = hl0,c,x(a) + v, where v = aql · · · a1b

−1
pl
c
· · · b−1

1 · u. On the one
hand:

∥v∥ ≤ ∥aql0 · · · a1∥∥b
−1
pl
c
· · · b−1

1 · u∥

≤ r∥aql · · · a1 · vT τ,X
l (c,x)∥∥b

−1
pl
c
· · · b−1

1 · u∥

≤ rCel0∥b−1
pl0

(c) · · · b
−1
1 · u∥

≤ e−Mε

And on the other hand:

∥v∥ ≥ 1

r
∥aq · · · a1∥∥b−1

p · · · b−1
1 · u∥

≥ 1

r
∥aq · · · a1 · vT τ

l (c′)∥∥b−1
p · · · b−1

1 · u∥

≥ 1

Cr
el ∥b−1

p · · · b−1
1 · u∥

≥ 1

Cr

e−M

CC0r
ε > 0
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Finally, item 4 results from item 2 of proposition 4.2 applied to b−1
pl

· · · b−1
1 · u and

VT τ
l (c) = VT τ

l (c′). Indeed, since a ∈ B0, we have aql · · · a1 · VT τ
l (c) = Vhl,c(a)

Now, Let (c, x) be an element of F and let (ηn) and (εn) be two sequences converging
to 0 when n goes to infinity. Proposition 5.2 applied to the point (c, x) with ηn and εn
converginf to 0 and e−Mε provides us with ln, un, vn as in the statement. Since f is
Qτ,X

∞ -measurable, we have:

f(hln,c,x(an)) = f(c, x) and f(hln,c,yn(an)) = f(c, yn)

Since X is compact, up to taking a subsequence we can assume that hln,c,yn
(an)

and hln,c,x(an) converge to points (c′, x′) and (c′, y′). Using the continuity of f and
the fact that yn = xn + un converges to x, we have:

f(c′, x′) = f(c, x) and f(c′, y′) = f(c, x)

We can further extract to have that vn converges to a non zero vector v∞, bounded
above by eMε and lying in Vc′ . Thus there is a 0 < t∞ ≤ ε such that v∞ = t∞ · vc′
and thus:

(c′, y′) = Φt∞(c′, x′)

and then

f(Φt∞(c′, x′)) = f(c′, x′) = f(c, x)

2. We now treat the general case where we drop the continuity assumption. The
strategy is to use Lusin’s theorem to work on a compact subset of arbitrarily large
measure on restriction to which the function f is continuous and redo the argument we
did before. The difficulty is to show that for a given (c, x) is this compact set, one can
find sufficiently many points in K whose past coincide at some relevant time with the
past of (c, x) ie we need an upgrade of proposition 5.2. This is where the last jumps
law comes into play. More precisely, Lusin’s theorem provides us with a compact set
K of mesure at least 1− α2 on restriction to which all the functions we shall consider
are continuous. Now, consider the function E[1K |Qτ,X

∞ ]. It is bounded above by 1 and
its integral over X is, by definiton of the conditional expectation bounded below by
1 − α2. Consequently, this function is bounded below by 1 − α on a set of measure
at least 1 − α. Using Lusin’s theorem once more, this means that there is a set L of
measure at least 1 − α on restriction to which f is continuous and such that for any
(c, x) in L we have:

E[1K | Qτ,X
∞ ](c, x) > 1− α

Now, an application of Doob’s martingale convergence theorem, shows that for
βτ,X -almost every (c, x) ∈ Bτ,X :

E[1K | Qτ,X
l ](c, x) →

l→∞
E[1K | Qτ,X

∞ ](c, x)
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Up to taking a smaller α, Egorov’s theorem applied to the countable family (E[1K | Qτ,X
l ])l∈|Q

shows that there is an l0 such that for any rational number l such that l ≥ l0 and for
any (c, x) ∈ L, we have

E[1K | Qτ,X
l ](c, x) ≥ (1− α)

Since α is arbitrary, it is enough to show that proposition 5.1 holds on L. Let F be
as in proposition 2.12 for the set L∩Bτ,X

0 . The following is the upgrade of proposition
5.2 that we need to conclude.

Proposition 5.3. For any (c, x) ∈ F , η > 0, ε1 > 0 and ε2 > 0, there are l > 0,
u ∈ R2 − {0}, v ∈ R2 and a ∈ B such that, setting y = x+ u:

1. ∥u∥ ≤ ε1

2. (c, y) = (c, x+ u) belongs to L

3. 0 < ∥v∥ ≤ e−Mε2

4. hlc,y(a) = hlc,x(a) + v

5. d(R · v, Vhl,c(a)) ≤ η

6. hlc,x(a) and hlc,y(a) both belong to K

Proof. The proposition goes exactly the same as in the continous case but a is now
chosen to also belong K, which is possible as soon as α > 1

3 so that the intersection of
K and the two sets of proposition 5.5 have a non trivial intersection.

Since by construction, f continous on L and K, the same argument as before can
be reproduced and we are able find for any (c, x) in F , a t in R with 0 < t ≤ ε and
(c′, x′) in Bτ,X such that:

f(Φt(c
′, x′)) = f(c′, x′) = f(c, x)

5.2 Invariance of the Furstenberg measures
Proposition 5.4. If ν is non atomic, then for β-almost every b ∈ B, the measure νb
is Vb-invariant.

Proof. Let E be as in proposition 3.1. By Corollary 3.1, we know that the map
σ : Bτ,X → PM(R) is Qτ,X

∞ -measurable and thus we can apply proposition 5.1. We
obtain that for any ϵ > 0 and for βτ,X -almost every (c, x) ∈ Bτ,X , there is a t ≤ ε and
(c′, x′) ∈ E such that:

σ(Φt(c
′, x′)) = σ(c′, x′) = σ(c, x)

but since (c′, x′) lies in E, we know that:

σ(Φt(c
′, x′)) = (τt)∗σ(c

′, x′)
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As a consequence, one gets:

(τt)∗σ(c, x) = σ(c, x)

Notice that, because of item 2 of 3.1 together with the fact that ν is a probability
measure, for βτ,X -almost any (c, x) ∈ Bτ,X the class σ(x, x) is represented by a σ-finite
measure. This allows us to pick a well defined representatives as follows: let n > 0
be the smallest integer such that σ(c, x)([−n, n]) is non-zero and choose the unique
measure σ̄(c, x)in the class σ(c, x) such that ¯σ([−n, n]) = 1. Now, the invariance by
translation of the σ(c, x) means that there is a measurable map α : Bτ,X → R such
that for βτ,X -almost every (c, x) ∈ Bτ,X , the following holds:

(τt)∗σ̄(c, x) = eα(c,x)·tσ̄(c, x)

Now, using the relation proved in corollary 3.2, we easily get:

α(T τ,X
l (c, x)) = elα(c, x)

We can now conclude that α vanishes on a conull set using everywhere Poincare
recurence theorem. Indeed, otherwise we could assume that, up to replacing α by
−α, there are two real numbers 0 < a < b such that α−1([a, b]) has positive measure.
Poincare recurence theorem would provide us with an unbounded sequence (ln)n∈N
and (c, x) ∈ α−1([a, b]) such that for any n > 0, T τ,X

ln
(c, x) belongs to α−1([a, b]).

This is a contradiction as soon as elna > b. The consequence of all this is that for
βτ,X -almost every (c, x) ∈ Bτ,X , the measure σ̄(c, x) is invariant by translation and
thus is a Lebesgue measure. Recall that Finally, using item 2 of proposition 3.1, we
see that for βτ,X -almost every (c, x) ∈ Bτ,X , the restriction of νc to any flowbox is a
sum of measures that are invariant by translation by Vc and thus is itself invariant by
translation Vc. This concludes.

6 The harvest

6.1 Invariance of the stationary measures
Proposition 6.1. If ν is non atomic, then it is the Haar measure.

Proof. Suppose to a contradiction that there is a set {b ∈ B | νb ̸= Haar} of positive
measure. Since this set is invariant by T , it has full measure. By proposition 5.4,
the νb are then lebesgue on a subtori of dimension 1 that is the image on a line of
rational slope. There is thus a well defined measurable map S : B → P(Q2) that maps
a point b to the line that supports νb. Let η be the pushforward S∗β. There is a
natural action of G on P(Q2) induced by its action on Q2. for any g ∈ G, We define
Lg : b 7→ (g, b1, b2, · · · ). The following relation is satisfied:

g · S(b) = S ◦ Lg(b)

We claim that the measure S∗β is µ-stationary. Indeed,
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∫
G

g∗η dµ(g) =

∫
G

(g · S)∗β dµ(g)

=

∫
G

(S ◦ Lg)∗β dµ(g)

= S∗(

∫
G

(Lg)∗β dµ(g))

= S∗β

= η

Now, let A be the set a atoms of maximal mass of η. Since η is a probability measure
this set is finite and we claim that this set is invariant by Γµ. indeed let x ∈ A. By
stationnarity:

1 = η({x}) =
∫
G

g∗η({x})dµ(g)

This shows that for µ-almost every g ∈ G, g · A = A and thus by definition of Γµ,
it preserves A and this proves our claim. This yields a finite union of lines that are
preserved by Γµ, in contradiction with the strong irreducibility. Thus, for almost every
b ∈ B, the measure νb coincides with the Lebesgue measure on the torus.

6.2 Classification of closed µ-invariant sets
We will need the following. Compare with proposition 2.6

Proposition 6.2. Let F be a finite Γ-invariant set. For any ε, there is a compact Kε

of X − F such that for any x ∈ X − F , there is a Mx ≤ 1 such that for any n ≥Mx:∫
G

1Kε(g · x) dµ∗n(g) ≥ 1− ε

Furthermore, Mx can be chosen to be constant on the compacts of F c.

Proof. Let a0 < 1, δ0 > 0 and n0 ≥ 1 be as in lemma 2.2. and using the same trick
that we used at the beginning of 2.6, we can assume that n0 = 1. Let dF be smallest
distance between to distinct points in F and define:

uF :
F c → R
x 7→ d(x, F )

This map is proper and we claim that there are a < 1 and C > 0 such that:

Aµ(uF ) ≤ a · uF + C

To prove this claim we define as before

R = sup
g∈Γµ

max({∥g∥, ∥g−1∥})
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and we consider the following two cases:
1. If d(x, F )(x) < dF

2R , then there is a unique x′ ∈ F and u ∈ R2 of norm at most
dF

2R such that x = x′+u. Consequently, for any g ∈ Γµ, we have that g ·x = g ·x′+g ·u
and the norm of g · u is smaller than dF

2 . This means that for any g ∈ Γµ, one has
uF (g · x) = ∥g · u∥ and thus according to lemma 2.2:

Aν(uF )(x) =

∫
G

∥g · u∥−δ ≤ a0 · ∥u∥−δ = a0 · uF (x)

2. Now, if d(x, F ) > dF

2R , then d(g · x, F ) > dF

2R2 and thus:

Aµ(uF )(x) ≤ (
2R2

dF
)δ =: C

Consequently:

Aµ(uF ) ≤ a0 · uF + C

Now, let ε > 0 and define K = {z ∈ F c | uF (z) ≤ 2B
ε }. Notice that 1Kc ≤ ε

2B f and
that for any n ≥ 1, we have An

µ(uF ) ≤ an0 · uF + b
1−a . Consequently, for any y ∈ F c:

An
µ(uF )(y) ≤

ε

2B
An

µ(f)(y) ≤
εan0
2B

f(y) +
ε

2

Since f is bounded on compact, this proves our claim.

Proposition 6.3. The torus X is the only infinite closed Γ-invariant set.

Proof. We will first do a simplification. As G is simple and Γ is Zariski dense, there
are g1, · · · , gl ∈ Γ such that Γ′ = ⟨g1, · · · , gl⟩ is still Zariski dense and finite index in
Γ. It is enough to prove the result for Γ′ instead of Γ. Define the following measure:

µ =
1

l
(δg1 + · · ·+ δgl)

The idea is to use the classification of ν-stationary measures that we established
to deduce the result. Notice first that the set of finite Γ′-orbits is countable. This
comes from the fact Γ′ has countably many finite index subgroups. Indeed, any finite
orbit yields a finite index subgroups by looking at the stabilizer of a point in the orbit
and the fixed points set of such a finite index subgroup are isolated, hence finite as
X is compact. The isolation property comes from the fact that Γ′ is finite index in
Γ together with the fact that the action of Γ is strongly irreducible. Thus, there is a
nested familly (Fi)i∈N of finite Γ′-invariant sets such that any finite and Γ′-invariant
subset is contained in one of the Fi. As F is infinite, one can choose a sequence (xi)i∈N
such that xi /∈ Fi.

Now, according to proposition 6.2, for any i ∈ N, there is a set Ki which is a
compact set of F c

i such that for any j ≥ 1, there is a Mj ≥ 1 such that for any n ≥Mj

and i ≤ j:
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µ∗n ∗ δxj
(Kc

i ) ≤
1

i

Set nj = jMj and define:

νj =
1

nj

nj∑
k=1

µ∗k ∗ δxj

For any i ≤ j, one has:

νj(K
c
i ) ≤

Mj

nj
+
nj −Mj

nj

1

i
≤ 2

i

This ensures that the limit points of the sequence (νj)j∈N for the weak∗ topology
are µ-stationary measures that do not give mass to the Fi. According to Theorem 1.1,
this measure is then the haar measure and thus F = X.

A Furstenberg measures
Proposition A.1. For β-almost every b ∈ B, the sequence of measure (b1 · · · bn)∗ν
converges to a measure νb in the weak-∗ topology. In addition, those measures satisfy
the following:

νb = (b1)∗νTb (6)

and

ν =

∫
B

νb dβ(b) (7)

Reciprocally, for any B-measurable b 7→ νb ∈ P(X) satisfying (6), the average
measure ν =

∫
B
νb dβ(b) is µ-stationary.

Proof. We introduce the filtration Sn of the σ-algebra B generated by the projection
on the n first coordinates of B. The information contained in Sn corresponds to the
last n steps of the random walk. Let f ∈ C0

c (X) and define a sequence of random
variables (Xn)n∈N∗ by:

Xn(b) = (b1 · · · bn)∗ν(f)

We observe that Xn is Sn-measurable. We claim that E[Xn+1|Sn] = Xn. To prove
this claim it is enough to prove that for any A = A1 × · · ·An ×B ∈ Sn:∫

A

Xn+1 dβ =

∫
A

Xn dβ

Let us compute:

24



∫
A

Xn+1 dβ =

∫
A1×···×An

(∫
G

(b1 · · · bng)∗ν(f) dµ(g)
)
dµ⊗n(b1, · · · , bn)

=

∫
A1×···×An

(∫
G

g∗ν(f ◦ b1 · · · bn) dµ(g)
)
dµ⊗n(b1, · · · , bn)

=

∫
A1×···×An

ν(f ◦ b1 · · · bn) dµ⊗n(b1, · · · , bn)

=

∫
A

Xn dβ

In other words, (Xn)n is a martingale. Doob’s martingale convergence theorem
ensures thus that for almost every b ∈ B, the sequence (b1 · · · bn)∗ν(f) converges.
Now, let (fp)p be a dense familly of function in C0

c (X). What has be done previously
ensures that for almost every b ∈ B, the sequence ((b1 · · · bn)∗ν(fp))n converges for any
p. We denote by νb(fp) this limit. Observe that:

|(b1 · · · bn)∗ν(fp)| ≤ ∥fp∥∞
This means that if fnp converges to a function f , the sequence ((b1 · · · bn)∗ν(fnp))p

converges by completeness of R and the limite does not depend on the choice of the
limiting sequence. We denote this limit νb(f). Finally, we observe that νb(af + bg) =
aνb(f) + bν(g) and thus by Riesz representation theorem, let νb be the measure corre-
sponding the the linear form f 7→ νb(f).

Proposition A.2. Let µ be a measure supported on GLn(R) such that the support
of the measure Γµ acts strongly irreducibly and proximaly on Rn. Then there is a
measurable map J : B → RPn−1 such that for β-almost every b ∈ B, the image of any
limit point of ∥b1 · · · bn∥−1 · b1 · · · bn is given by J(b).

Proof. To be added. We refer to [?]

Proposition A.3. Let φ ∈ L1(B, β). There is a conull subset N ⊂ B such that if
b ∈ N , then for β almost every (g0, g2, · · · ) ∈ B we have:

1

N

N∑
n=1

φ(gn−1 · · · g0 · b) →
∫
B

φ dβ

Proof. Recall that the bi infinite shift S : GZ → GZ; (ωn)n 7→ (ωn+1)n is ergodic for
the measure µ⊗Z. Define ι : GZ → B, (ωn) 7→ (ω−1, ω−2, · · · ) and φ̃ = φ ◦ ι. Notice
that φ̃ ◦ Sn(ω) = φ(ωn−1 · · ·ω0 · ι(ω)) and ι∗µ

⊗Z = β. The Birkhoff ergodic theorem
gives that for µZ-almost every ω:

1

N

N∑
n=1

φ̃ ◦ Sn(ω) =
1

N

N∑
n=1

φ(ωn−1 · · ·ω0 · ι(ω)) →
∫
GZ
φ̃ dµ⊗Z =

∫
B

φ dβ
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To conclude, let (βb)b be the conditionnal measures for the disintegration of µZ

along the fibers of ι and let N = {b ∈ B | βb(ι−1(b)) = 1}. By construction this set
has full measure and any b ∈ N satisfies the conclusion of the statement.

B Rohlin’s theorem for disintegration of measures
Proposition B.1 (Rohlin). Let (X,µ) and (Y, ν) be two standard Borel spaces. Let
π : X → Y be a measurable map such that π∗µ << ν. Then there is a collection of
measures (µy)y∈Y on X

• For ν-almost any y ∈ Y , µy(π
−1(y)) = 1

• For any f ∈ L1(µ), the map y 7→
∫
X
f dµy is in L1(ν)

• For any f ∈ L1(µ),
∫
X
f dµ =

∫
Y
(
∫
X
f dµy(x)) dν(y)

Moreover, if (µ′
y)y∈Y is another such collection, then for ν-almost every y ∈ Y , we

have µy = µ′
y.

A proof of this result can be found in [?]
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